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Abstract. We present a solvable model for describing quantitatively situations where the individual be-
haviour of agents in a group “percolates” to collective behaviour of the group as a whole as a result of
mutual influence between the agents. Stability of collectives, reliability of complex devices, etc., can be
approached in this way.
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1 Introduction

One very common interaction between the individuals of a
group is the tendency to imitate each other. Under certain
conditions this might be expected to critically affect the
behaviour of the group as a whole. It may be interesting to
have a quantitative understanding of the conditions under
which individual patterns of behaviour may propagate to
a group behaviour as a result of mutual influence among
a few neighbors. As another example we may consider the
problem of ensuring the reliability in functioning of a com-
plex machinery by increasing redundancies. Typically the
“parallel” components cannot be made completely inde-
pendent. We ask therefore which are the limitations of
redundancy in ensuring reliability if failure propagation
is possible? This is one major question in security anal-
ysis [1]. Further examples could be found which contain
related problem settings: critical reactions, epidemic mod-
els, market behaviour etc. (see, e.g., [2–4]).

Here we want to analyze how induced behaviour can
lead to collective effects in the frame of a probabilistic
model introduced earlier [5] and which can be solved ex-
actly. Thereby we restrict ourselves to the very elementary
mechanism of imitation and we do not attempt to include
more refined interactions, such as beliefs, goals, coopera-
tion/competition, etc. – see, e.g., [6]. For this case we can
provide a solution in closed form. This will allow quantita-
tive assessments for questions related to reliability, group
behaviour etc. The model will be described and discussed
in Section 2 and its solution in Section 3. Here we also de-
fine a Monte-Carlo simulation by interpreting the closed
solution as a partition function. Approximations permit-
ting some qualitative insight are discussed in Section 4.

a e-mail: stamates@thphys.uni-heidelberg.de

In Section 5 we present and discuss the results for some
representative cases. Here we use the Monte-Carlo simu-
lation to treat large ensembles of agents with “realistic”
correlations.

2 The probabilistic model

We consider:
a set N consisting of n points, labeled i = 1, . . . , n, each
of which can spontaneously burst (and “disappear”) with
probability w0i and let Kij be the induced probability that
point i bursts because j has bursted.

If these points represent the parallel components of a
machinery, the functioning of the latter is ensured as long
as at least one of the components works. For the behaviour
of a group of agents the relevant question is again whether
(practically) all agents show the same behaviour. The key
quantity is therefore the probability with which all points
have bursted:

W ≡W (n) ≡W (n; {w0,K}). (1)

We also define the “no-propagation” probabilities

Lij = 1−Kij (2)

and introduce the following simplifying assumptions:

1) symmetry:

Kij = Kji; (3)

2) independence of “no-propagation” events:

L1(23) = L12 L13, (4)
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i.e. the probability that point 1 bursts because 2 and
3 have both bursted is

K1(23) = 1− L1(23) = K12 +K13 −K12K13. (5)

Notice that the absence of time evolution in this model
implies that, in a real situation, the whole development is
expected to take place in a very short time such that no
parameter changes appreciably. The simplifying assump-
tions 1), 2) are of course limitations, we can imagine,
however, many realistic situations under which they hold
approximately. Symmetry, for instance, may well be ex-
pected to hold on the average in a group of similar agents
(the birds in a flock, say). The independence assump-
tion 2) depends on the real interactions.

For illustration consider the following “temperature
model”: 3 points isolated in an enclosure, with the burst-
ing probability for point ‘1’ described by some monotonic
function of the ambient temperature. Assume that burst-
ing of a point increases the average temperature by ∆T .
We ignite points ‘2’ and/or ‘3’ and see what happens with
‘1’. If only ‘2’ or ‘3’ had bursted, ‘1’ will go off with proba-
bility P (∆T ), while if both ‘2’ and ‘3’ went off the ambient
temperature is 2∆T and ‘1’ will explode with probability
P (2∆T ). Then (5) would require:

P (2∆T ) = 2P (∆T )− P (∆T )2, (6)

or, with h(T ) = − ln(1− P (T )),

h(2T ) = 2h(T ), (7)

with solution h(T ) = a T . Hence in this “temperature
model” only:

P (T ) = 1− e−aT (8)

is compatible with (5). In particular, a threshold be-
haviour like P (T ) = θ(T − T0) will violate (6) if ∆T <
T0 < 2∆T . We shall retain, however, for this analysis the
independence assumption (we shall indicate below how
one can relax it when the dynamics of the interaction is
known).

Before we proceed and solve the model notice the fol-
lowing four limiting cases:

Kij = 0: W = W0(n) ≡
n∏
i=1

w0i; (9)

Kij = 1: W = W1(n) ≡ 1−
n∏
i=1

(1− w0i); (10)

w0i = 0: W = 0; (11)
w0i = 1: W = 1. (12)

They are helpful for tests, normalization, etc.

3 Exact solutions

3.1 Combinatorial solution

Starting to solve the model we first remark: in following
the propagation of the bursts each Kij can be used only
once: there is no way to get something like K2

ij.

It is convenient to introduce the notation α = (ij) for
the non-ordered pair {i, j}. There are 1

2n(n− 1) different
α’s, {α} = Ω. Let ω denote a subset of α’s; there are
2

1
2n(n−1) different ω’s (including the empty set ∅). For the

time being we shall take w0i = w0 independent on i, then
W is of the form:

W ≡W (n,w0, {Kα}) =
∑
ω

Cω
∏
α∈ω

Kα, (13)

with the last factor taken to be 1 for ω = ∅. Putting K = 1
on a subset of Ω and 0 in the rest we define:

Wω = W |Kα=1 if α∈ω, Kα=0 if α6∈ω (14)

and we have:

Wω =
∑
ω′⊆ω

Cω′
∏
α∈ω′

Kα|Kα=1 =
∑
ω′⊆ω

Cω′ . (15)

Let for ω′ ⊂ ω:

±ωω′ =

(−1)(nr. of elements of ω)−(nr. of elements of ω′), (16)

then we can invert (15) to obtain

Cω =
∑
ω′⊆ω

±ωω′Wω′ . (17)

We next evaluate Wω. Each ω achieves a partition of N in
the following way: if {i, j} ∈ ω we join the points i and j.
ThusN is partitioned into (non-empty) connected subsets
ν

(ω)
k labeled with the index k and containing n(ω)

1 , n
(ω)
2 , . . .

points, n(ω)
k > 0, such that

∑
k n

(ω)
k = n. Then:

Wω =
∏
k

(
1− (1− w0)n

(ω)
k

)
(18)

and thus from (17, 13)

W =
∑
ω⊆Ω

∑
ω′⊆ω

±ωω′
∏
k

(
1− (1− w0)n

(ω′)
k

) ∏
α∈ω

Kα.

(19)

After rearranging the terms using (16), (19) gives:

W (n;w0, {K}) =
∑
ω⊆Ω

∏
k

(
1− (1− w0)n

(ω)
k

)
×
∏
α∈ω

Kα

∏
α′∈CΩω

(1−Kα′). (20)

The extension to different w0i is straightforward and leads
to the general solution:

W (n; {w0,K}) =
∑
ω⊆Ω

∏
k

1−
∏
i∈ν(ω)

k

(1− w0i)


×
∏
α∈ω

Kα

∏
α′∈CΩω

(1−Kα′). (21)

The sum over ω is taken over all subsets of Ω, including
the empty set and Ω, where Ω is the set of all α’s, and
CΩω is the complement of the set ω in Ω.
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3.2 Iterative solution

It is helpful to write down also an iterative solution of
the model. Consider a set η of points out of which only a
subset σ is still untouched, and consider all the ways the
failure can propagate from the points in Cησ to those in σ,
then the probability that also σ blows up is:

P (η|σ) =
∑
∅⊆τ⊂σ

∏
i∈Cστ

1−
∏
j∈Cησ

Lij


×
∏
i∈τ

 ∏
j∈Cησ

Lij

P (σ|τ), P (η|∅) = 1 (22)

and we have:

W (n; {w0,K}) =
∑
∅⊆σ⊂N

∏
i∈CNσ

w0i

∏
j∈σ

(1− w0j)P (N|σ).

(23)

For the case of “homogeneous interaction”

Kij = K, Lij = L, (24)

(22, 23) simplify considerably:

Pm,l =
l−1∑
k=0

(
l
k

)
(1− Lm−l)l−k (Lm−l)k Pl,k (25)

W (n;w0,K) =
n−1∑
m=0

(
n
m

)
wn−m0 (1− w0)m Pn,m. (26)

Finally let us remark that in the frame of an explicit model
for the interaction one can relax the assumption (5) and
directly construct the compound probabilities appearing
in (22). For instance, for the “temperature model” of Sec-
tion 2 we only need to substitute in (22):

∏
j∈Cησ

Lij → 1− Pi

∑
j∈Cησ

Tij

 , (27)

where Tij is the increase in temperature at site ‘i’ due to
the bursting of point ‘j’ and Pi(T ) is the probability that
point ‘i’ explodes when the ambient temperature is T .

3.3 Monte Carlo analysis

A Monte Carlo simulation can be set up based on (20,21).
We define for arbitrary p “partition functions”:

Zp =
∑
ω⊆Ω
W0(ω)p

∏
α∈ω

Kα

∏
α′∈CΩω

(1−Kα′), (28)

where

W0(ω) =
∏
k

(
1− (1− w0)n

(ω)
k

)
(29)

and we have (see also (12)):

Z0 = 1, Z1 = W (n). (30)

Starting from any partition function Zp we can write
W (n) using averages:

W (n) =
〈W1−p

0 〉p
〈W−p0 〉p

, (31)

〈Wq
0 〉p =

1
Zp

∑
ω⊆Ω
W0(ω)q+p

∏
α∈ω

Kα

∏
α′∈CΩω

(1−Kα′),

in particular (see (30)):

W (n) = 〈W0〉0. (32)

The MC procedure uses the terms in Zp as Boltzmann-
Gibbs factors to achieve an importance sampling of νωk
partitions. In test simulations using p = 0, 0.5 or 1 the
results were similar, therefore we used for the systematic
analysis p = 0, i.e. equation (32), which is faster. Then
the Metropolis algorithm, which produces new partitions
by adding or removing “bonds” α = (ij) one at a time,
is local (and vectorizable). Note that since the W0 are
positive, lack of convergence in the MC simulation based
on (32) is likely to show up as underestimation of the exact
result.

Whenever we could compare the results of the Monte
Carlo simulation with exact summation of either the com-
binatorial (20,21) or the iterative (22,23) solution we have
found good agreement – see Section 5.

4 Approximations

4.1 Mean field approximation

We introduce an “effective” bursting probability wi via
the consistency equation

1− wi = (1− w0i)
∏
j 6=i

(1− wj Kij). (33)

We shall in the following assume translational invariance,
that is, w0i = w0 and Kij = K|i−j|. For finite systems
we shall assume periodic boundary conditions. Then the
mean field equation reads:

1− w = (1− w0) exp

(
n−1∑
ν=1

ln(1− wKν)

)
. (34)

w can be found iteratively. A rough estimate is:

w ' 1− (1− w0) e−λK, K =
n−1∑
ν=1

Kν (35)

with some λ ∼ O(1). The parameter K has an intuitive
meaning: it gives the average number of points which can
be affected by one point. We then have:

W (n) ' wn − (w − w0)n ∼ exp
(
−(1− w0) elnn−λK) ,

(36)

which indicates that the behaviour of W (n) is determined
by the dependence on n of K.
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4.2 A lower limit

A more refined approximation can be derived which, for
the case of homogeneous interaction (24) provides a lower
bound for W (n). For this we start from the iterative so-
lution (22, 23) and assume that for some λ we have:

P (σ|τ) ≥
∏
i∈τ

(1− Fi(σ;λ)) (37)

Fi(σ;λ) ≡
∏

j∈σ, j 6=i
(1− λKij) (38)

(here ∅ ⊆ τ ⊂ σ ⊂ η). Since all contributions to (22) are
positive we can then write:

P (η|σ) ≥
∑
τ⊂σ

 ∏
i∈Cστ

1−
∏
j∈Cησ

Lij


×

∏
i∈τ

 ∏
j∈Cησ

Lij

[∏
i∈τ

(1− Fi(σ;λ))

]

=
∏
i∈σ

1− Fi(σ;λ)
∏
j∈Cησ

Lij


−
∏
i∈σ

(1− Fi(σ;λ))
∏
j∈Cησ

Lij


≥
∏
i∈σ

(1− Fi(η;λ)). (39)

If we can prove that there exists a 0 ≤ λ ≤ 1 such that
the last inequality holds, then we have:

W (n; {w0,K}) ≥
∏
i∈N

(1− Fi(N ;λ) (1 − w0i))

−
∏
i∈N

(1− Fi(N ;λ)) (1− w0i). (40)

In the homogeneous interaction case we can show that a
λ > 0 can always be found such that (39) holds. We have:

Fi(m;λ) = (1− λK)m−1 (41)

and we must show that for all m, l < m:

[
1− (1− λK)l−1(1−K)m−l

]l ≥ [1− (1− λK)m−1
]l

+
[
(1− (1− λK)l−1)(1−K)m−l

]l
. (42)

The expression in the square brackets on the left hand side
decreases with increasing l, while those on the right hand
side do not. Therefore the worst case is l = m− 1 and it
is enough to prove that:[

1− (1− λK)m−2(1−K)
]m−1 ≥

[
1− (1− λK)m−1

]m−1

+
[
(1− (1− λK)m−2)(1−K)

]m−1
. (43)
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Fig. 1. λ satisfying (43) vs. n for various K. For values of λ
below the curves the formulae (38, 40) provide lower bounds.

For m = 2 (43) is satisfied for any λ < 1. For m ∼ 1/K
(43) is satisfied for λ ≥ 1/2 and with increasing m the
bound on λ goes toward 1. More precise numerical bounds
are given in Figure 1. For the general correlation case
we may use (40) as an alternative to the mean field
approximation.

5 Results and discussion

In the introduction we asked about the collective effects of
induced behaviour of agents in an ensemble. As we have
noticed, various specific questions can be asked in this
context. They can all be subsumed under some general
questions, which in the above model can be exemplified
as follows:

Question 1: How does the total burst (failure) probability
W (n,w0, {Kij}) behave with increasing n for various types
of “aggregation”, distinguished by the way in which the
mutual influence between agents (systems) depends on n?

As an instructive example we consider a 1-dimensional
ensemble and put n points equidistantly on a circle
(to avoid boundaries). We assume “finite correlation
length” ξ:

Kij = a e−dij/ξ, (44)
dij = min(|i− j|, n− |i− j|), (45)

with

ξ(n) = ξ0 n
α. (46)

Hence for α = 1 we have an intensive aggregation (more
and more points come under the influence of a single one
while the size of the ensemble measured in correlation
lengths stays fixed) and for α = 0 an extensive aggrega-
tion (the density of points stays constant while the total
volume increases). 0 < α < 1 interpolates between these
situations (we are not concerned here with the dynamics
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Fig. 2. W (n) vs. n from the mean field approximation using
the iterative solution of equation (34); the line identified by
“approx.” uses the further approximation (48) with λ = 1. We
use w0 = 0.1, a = 0.3, ξ0 = 1/3.5 – see (44-46). The different
aggregation types are identified by α.

of the aggregation: attraction, repulsion etc but just take
the aggregation law as given).

A rough impression is offered by the mean field ap-
proximation. For large n and small w0, K:

K ' a ξ0 nα (47)

and

lnW (n) ∼ −(1− w0) exp (lnn− aλ ξ0 nα) , (48)

see (34-36), which has a minimum for:

nmin ∼ (aαλ ξ0)−
1
α , (49)

above which W (n) goes to 1 for all α > 0. In Figure 2
we illustrate this behaviour, both from formula (48) and
using an iterative solution of equation (34).

Hence it appears that a drastic change in the group
behaviour is expected to occur when the average degree
of mutual influence represented by (35, 47) starts to com-
pensate for the statistical “insignificance” of an individual
(observe the compensation in the exponent of Eq. (48)).

We now turn to the exact solutions to see more pre-
cisely what happens. Since the number of partitions in
the sum in (21) increases as 2

n(n−1)
2 we could sum exactly

the combinatorial formula (21) to evaluate W (n) only for
n up to ∼ 7. An exact algorithm based on the iterative
solution (22, 23) allowed us to go up to n about 11, we
restricted ourselves to n = 9 for systematic runs. Large n
were reached by Monte Carlo analysis using (28-32).

For a check of the MC accuracy we compare in Figure 3
the MC calculation with the exact summation for the case
of homogeneous interaction (25, 26) (infinite correlation
length ξ). Here and below the errors quoted do not ac-
count for statistic correlations in the data and are only
indicative for the stability of the latter. In the region of
small probabilities beyond the minimum the Monte Carlo
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10 20 30 40 50 60 70 80 90 100

MC, w_0=0.2, K=0.20
exact, w_0=0.2, K=0.20

ref.appr., w_0=0.2, K=0.20
m.f.appr., w_0=0.2, K=0.20

MC, w_0=0.2, K=0.10
exact, w_0=0.2, K=0.10

ref.appr., w_0=0.2, K=0.10
m.f.appr., w_0=0.2, K=0.10

MC, w_0=0.2, K=0.05
exact, w_0=0.2, K=0.05

ref.appr., w_0=0.2, K=0.05
m.f.appr., w_0=0.2, K=0.05

Fig. 3. W (n) for homogeneous interaction (infinite correlation
length) from: the Monte Carlo simulation, the exact summa-
tion of the iterative solution (25, 26), the “refined approxima-
tion” (40) (with the corresponding minimal values of λ from
Fig. 1) and the mean field approximation (34). Here w0 = 0.2,
K = 0.05, 0.1 and 0.2.

data for large n are seen to systematically underestimate
the result by up to 30%, which may be due to insufficient
thermalization of our runs (we start with a random bond
configuration and perform 10 000 thermalization sweeps
at each n) – otherwise the agreement is very good.

We also can see in Figure 3 that the “refined approx-
imation” of Section 4.2 does provide a lower limit and
is better than the mean field approximation in the re-
gion of the minimum of W (n), while the latter describes
more accurately the asymptotic regime. Both of them,
however, are rather far from the exact and MC results.
While providing qualitative insights and predicting cor-
rectly the position of the minimum and the asymptotic
behaviour, the mean field approximation fails even at the
semi-quantitative level: the value of W (n) near the mini-
mum is underestimated by orders of magnitude.

For the more realistic (finite correlation length ξ) case
we show in Figure 4 numerical results (exact summation
and Monte Carlo simulation) for distance dependent inter-
action K (44, 45), using w0 = 0.1, a = 0.3 and ξ0 = 1/3.5
for various types of aggregation: α = 0, 0.5, 0.6, 0.65,
0.75 and 1 (46). We see that even for small α (exten-
sive aggregation) the presence of correlations can increase
W (n) by a large factor. The most interesting result is,
however, the indication of the existence of an α0 signifi-
cantly below 1, such that for α > α0 W (n) does indeed
develop a minimum after which it grows to 1 as suggested
by (48) and (49). The minimum is rather shallow and
can appear already at small n. Hence, ensembles which
do not “expand” fast enough with increasing number of
points (i.e., for which the size of the system measured in
correlation lengths, n/ξ increases only as a small power of
n, 1−α < 1−α0) are intrinsically unstable under induced
behaviour.
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w0**n

Fig. 4. W (n) vs. n from the exact summation (lines) and
Monte Carlo simulation (points with error bars) for various
aggregation types, for w0 = 0.1, a = 0.3, ξ0 = 1/3.5. Also
shown is wn0 , for comparison.

For the reliability problem, this shows that redundancy
may be of only limited help in case failure propagation be-
tween the “parallel” components can involve significantly
many of the latter. It has been already observed, e.g. in
security analysis [1], that correlations between redundant
systems can strongly modify the total failure probability.
What we show here – in a simplified model but which
allows a quantitative assessment – is that failure propa-
gation can make that beyond some threshold redundancy
may even work the wrong way. Thus our model shows
quantitatively the importance of failure propagation, es-
pecially since the above threshold may be quite low.

As a side remark, we notice again the large difference to
the mean field approximation, especially in the interesting
turn over region – compare Figures 2 and 4. This points
to the benefit of having exact solutions and algorithms
allowing faithful numerical analysis.

Consider now an ensemble whose spatial organization
can vary, for fixed n, then we can ask:

Question 2: Assuming a constant interaction scale, how
does W behave if the density of the points varies?

Roughly, this means that the strength of the correla-
tion varies. In Figure 5 we show the dependence of W
on the density ρ (i.e., on K) for the homogeneous in-
teraction case, ξ → ∞ (25,26) (exact summation) for
n = 25, 50, 100 and 200 using the ad hoc rule:

K(n) = ρ (20/n)0.78 (50)

to bundle the data and allow comparison of various n.
For the more general case (finite ξ) we show in Figure 6

W from the Monte Carlo simulation for three values of n
as function of the density ρ, where we take

ξ(n, ρ) = ξ0 ρn
α (51)
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n=  25
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Fig. 5. The dependence of W on K for the homogeneous in-
teraction case (infinite correlation length) (25, 26) for w0 = 0.2
and n = 25, 50, 100 and 200. W is plotted here vs. ρ,
equation (50).
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Fig. 6. W vs. ρ (the density in Eq. (51) with α = 0.22) for
the general case from the Monte Carlo simulation with n = 25,
n = 50 and n = 100 and w0 = 0.1, a = 0.3 and ξ0 = 1/3.5.

in (44), with α = 0.22, for illustration. We see that fluc-
tuations of the density can easily destabilize the ensemble
if the latter is near some “critical” density, ρc(n). For in-
creasing n the critical fluctuations decrease.

Also other ways of introducing a scale or for posing the
stability question can be imagined. In the above discussion
the parameters have been chosen more or less arbitrarily.
Of course, the explicit results depend on the particular
problem: the form of the function K(d), the spatial ar-
rangement, the aggregation form etc. It seems, however,
that we see here a generic feature of induced behaviour,
namely the capability to produce collective effects and
that we are able in the frame of this probabilistic model
to provide a quantitative analysis of this capability.
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Notice that this model is rather versatile. Although we
do not have here a statistical mechanics system of fluctu-
ating variables with the associated partition function, we
have achieved a full description of the problem. Both the
combinatorial and the iterative solution (as well as the MC
algorithm) involve completely general {Kij}, {w0i}. Any
geometry or interaction can be accommodated giving the
{Kij} accordingly – e.g., by defining neighborhood rela-
tions and distances etc. Likewise, inhomogeneities can be
introduced by fixing the {w0i} correspondingly. In partic-
ular, one can define continuum limits, e.g., by fixing the
“external parameter” ρ in (51) and taking n→∞ in some
given geometry and for some α.

An interesting question concerns the relation to per-
colation phenomena. The equations of the model contain
in fact more information than only the total burst prob-
ability W : a term P (N|σ) in (23), for instance, gives the
probability that a subset σ is ignited by the bursting of its
complement CNσ . Percolation problems, however, are de-
fined by more specific conditions concerning the clusters
and it is not clear to us at present if such conditions can
be easily modelled in the above context. This is surely one
of the interesting questions to investigate.
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